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ABSTRACT:  In this paper, students and teachers are provided with problems that lead  

them in finding the integrals of logarithmic and inverse trigonometric functions 

early in the calculus sequence by using the Fundamental Theorem of Calculus and 

the concept of area and without the use of integration by parts.  The methods link 

geometric and symbolic representations, and allow students to visually interpret 

these concepts.   
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For the past decade, calculus and calculus reform have been sources for discussion in 

post-secondary mathematics.  There have been a plethora of suggestions for ways to 

improve calculus instruction, including a widespread push for the use of graphing 

technology in the classroom.  However, there is yet to be consensus among instructors 

concerning the topics which should be taught or the methods used to teach them.  

Nevertheless, the view of having multiple representations of concepts for mathematical 

learning (graphical, numerical and algebraic) is one that has been growing in 

significance. Kaput [2, p. 89-103] suggests that the use of multiple representations allows 

one to emphasize some aspects of more complex concepts while de-emphasizing others 

thereby helping students make connections and develop a deeper and more flexible 

understanding of those concepts.   If technology is to be effectively utilized in a 

classroom, students must be able to effectively operate among these various 

representations.  Graphical representations can be easily added to algebraic and numerical 

representations through the use of the graphing calculators.  By linking these 

representations, we have found that we can enhance the visualization of the topics of 
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integration of logarithmic functions and inverse trigonometric functions, the focus of this 

article.  

These integration problems are normally tackled in the second semester of a traditional 

calculus course when integration by parts is introduced.  (That is, integration by parts is 

typically used to find the integrals of logarithmic and inverse trigonometric functions).  

Boas and Marcus [1, p. 285-286], however, took a different route and found a 

formulation for integration by parts in terms of inverse functions.  Nelsen, used an area 

model in his Proof Without Words [3, p. 287] to illustrate integration by parts.  We 

believe, however, that the integrals of these logarithmic and inverse trigonometric 

functions can be taught much earlier in the calculus sequence without the use of 

integration by parts. 

Many students have relevant knowledge that they do not draw upon in thinking about 

topics in calculus.  Such is the case when investigating the integrals of logarithms and 

inverse trigonometric functions.  We have found that by using the knowledge of inverse 

functions and the geometric ideas of area, these integrals can be found. 

The problems presented in this article are a sampling of those used by the authors in a 

first semester calculus course.  They have been used in courses taught at both the Illinois 

Mathematics and Science Academy and Kent State University-Stark Campus in a variety 

of settings and with students of varying abilities.  In order to successfully solve these 

problems, the students must have a solid background in the topics of one-to-one and 

inverse functions, including logarithmic and inverse trigonometric functions.  These 

topics are typically investigated in prerequisite precalculus courses. Given these 

prerequisites, the Fundamental Theorem of Calculus is the key to understanding the ideas 

presented here.  It is imperative that the instructor present this theorem, its consequences 

and its applications carefully and in great detail.  The Fundamental Theorem of Calculus 

has always been a part of any serious calculus course, but often it is simply the 

mechanical manipulation that is emphasized.  By leading students carefully through the 

proof of this theorem and presenting them with thoughtful problems, we have found that 

this method does not require any more course time than what should already be devoted 

to this very important result. The diligent student is rewarded with a sneak preview of the 

technique of Integration by Parts, but most importantly rewarded with a deeper 
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understanding of the geometric nature of integration and the omnipresent theme of the 

Fundamental Theorem of Calculus. After all, the extensions of this theorem range from 

the concrete higher dimensional analogues of the theorems of Green and Stokes to the 

abstract and elegant result of Radon and Nikodym. 

Typically, problems like problem 1 are given as in-class exercises where the students 

work together in small groups. The rest, along with their respective hints, are a sample of 

problems given either as outside exercises, (homework), as part of a take-home test, or as 

challenging items of an in-class examination.  Occasionally, additional hints (maybe a 

reminder of the fact that area is rotation invariant) are given. When used as outside 

exercises, students may seek additional help provided that they first explain how they 

attempted to complete the exercises.  In our experience, we have not found these ideas to 

be beyond the grasp of the conscientious student.  Incorporating this material as graded 

assessments motivates students while imposing no additional time burden to the course.  

On the contrary its introduction early in the course could result into saving time. Calculus 

students in both of the institutions mentioned above, found the problems "refreshing" and 

"insightful".  One student wrote: “…it was hard at first, but has paid off many times for 

me…Your classroom style also helped us work extra hard and truly master the material, 

rather than just learning some formulas like many teachers do.” 

Our goal is to help students draw upon previously held knowledge and to guide them to 

perform at increasingly challenging levels as you will see in the problems presented here.  

As an alternative to straight lecture, we believe interactive learning can provide students 

with situations that push the boundaries of their abilities and actively engage them in 

tasks. We accomplish this by breaking problems into workable parts of increasing 

complexity structured to illustrate the power of the important concepts and techniques 

mentioned earlier as well as to link algebraic and trigonometric concepts with topics that 

are not normally handled in this manner. 
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Integration of logarithmic and inverse trigonometric functions 

The Fundamental Theorem of Calculus is a focus here.  More often than not, instructors 

and students alike, downplay the role of the first Fundamental Theorem of Calculus (that 

is, for continuous f in [a, b] we have ∫ =
x

a
xfdttf

dx
d )()( ).  Figure 1 illustrates this fact.  

 

 
Figure 1: If A(x) is the area under the graph 
of  f from a to x then the derivative of A is f. 

 

The combination of this theorem, together with elementary ideas about integrals and 

inverse functions is potent.  The problems that follow lead one in finding antiderivatives 

of inverse functions without the use of integration by parts. 

 

Problem 1 (Warm up)  Suppose that f is continuous and increasing with f(0) = 1, 

f(2) = 9  and ∫ =
2

0
8)( drrf .  Compute ∫ −9

1

1 )( dssf . 

 

Solution: 

 

 
Figure 2: Area 2 is the integral of  the 

 inverse function over the interval [1, 9]. 
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After viewing Figure 2, the solution becomes obvious. Notice, Area 1 + Area 2 is the area 

of the rectangle with vertices (0,0), (2,0), (2,9) and (0,9).  Thus, Area 1 + Area 2  = 18.  

The integral ∫ −9

1

1 )( dssf  is simply the shaded area in Figure 2  (Area 2).  Given that  

Area 1 =  ∫ =
2

0
8)( drrf , we conclude  Area 2 = ∫ −9

1

1 )( dssf  = 10. 

 

Problem 2 (The antiderivative of the logarithm)  One of the antiderivatives of the 

natural logarithm is the function F defined by F(x) = ∫
x

dtt
1

ln ,   for  x > 0.  Find a “nice” 

formula for )(xF  by interpreting it as an area. (Hint:  Refer to Problem 1 and DRAW A 

PICTURE!). 

 

Solution: 

 

 
Figure 3: Area 1 is a geometric representation of  

 an antiderivative for the natural logarithm.  
 

After viewing Figure 3, one can see that )(xF  is nothing more than the shaded area of the 

figure (i.e. Area 1).  So we have that )(xF  = Area 1 = ∫
x

dtt
1

ln , while Area 2 = dte
x t∫

ln

0
. 

As with the previous problem the key idea is that areas of rectangles are easy to compute.  

Indeed the sum of Area 1 and Area 2 is the area of the rectangle with vertices (0,0), (x,0), 

(x,ln x) and (0,ln x). So  Area 1 + Area 2  = xx ln .  Hence,  

dtexxxF
x t∫−=

ln

0
ln)(  = 1ln ln +− xexx  = 1ln +− xxx . 

Thus we conclude that the general form of an antiderivative of f is 

ln lnx dx x x x C= − +∫   
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where C is an arbitrary constant. 

 

Problem 3  Using the ideas of problem 2 find the following antiderivatives: 

a. dxx∫ −1tan  

b. dxx∫ −1sin  

c. dxx∫ −1sec  

 

Solution: 

a. Following the plan of the previous problem, for any real x, we let ∫ −=
x

dttxF
0

1tan)( . 

Then F is an antiderivative of the inverse tangent function.  
 

 
Figure 4: Area 1 is a geometric representation of  
an antiderivative for the inverse tangent function. 

 

By Figure 4 above, )(xF = Area 1 (i.e. the shaded area).   

Furthermore, Area 1 + Area 2  = xx 1tan − , with  Area 2  =  ∫
− x

dtt
1tan

0
tan .  Hence, 

xxxF 1tan)( −= −  ∫
− x

dtt
1tan

0
tan   = xx 1tan − + ( )x1tancosln −  = )1ln(

2
1tan 21 xxx +−− , 

and so 

Cxxxdxx ++−= −−∫ )1ln(
2
1tantan 211 . 

 

b. Again, for  −1≤ x ≤ 1, we let ∫ −=
x

dttxF
0

1sin)( . Then, F is an antiderivative of the 

inverse sine function.  
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Figure 5: Area 1 is a geometric representation of 

 an antiderivative for the inverse sine function. 
 

By Figure 5 above, )(xF  = Area 1 (i.e. the shaded area).  Furthermore, Area 1 + Area 2  =  

x xsin−1 , with Area 2 = ∫
− x

dtt
1sin

0
sin .  Hence,  

2111sin

0

1 1sin)cos(sinsinsinsin)(
1

xxxxxxdttxxxF
x

−+=+=−= −−−− ∫
−

, 

 

and so, 

sin sin∫
−

−= + − +
1 1 21x dx x x x C . 

 

c. For  x ≥ 1, we let dttxF
x

∫ −=
1

1sec)( . 

Then  F is an antiderivative of the inverse secant function on the interval [1, ∞). 

 

 
Figure 6: Area 1 is a geometric representation of an 

 antiderivative  for the inverse secant on the interval [1, ∞). 
 

By Figure 6 above, )(xF = Area 1 (i.e. the shaded area).  
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Furthermore, Area 1 + Area 2 = xx 1sec− , with Area 2 = ∫
− x

dtt
1sec

0
sec .  Keeping in mind 

that for x ≥ 1, 0 ≤ 1sec− x < π/2, and that on the first quadrant the tangent function is non-

negative, we have  

 

)(xF  = xx 1sec−  − ∫
− x

dtt
1sec

0
sec  

     = xx 1sec−  − )tan(sec)sec(secln 11 xx −− +  

     = xx 1sec−  − 1ln 2 −+ xx  

and so,  

    ∫ =− dxx1sec xx 1sec−  − Cxx +−+ 1ln 2 . 

For  x ≤  −1, we let ∫−
−=

x
dttxF

1

1sec)( . 

 
Figure 7: The negative of the sum of the areas of the regions R1 and R, 

 represents an antiderivative for the inverse secant on the interval  (-∞, -1]. 
 

Then F is an antiderivative of the inverse secant function on the interval ( −∞, −1]. 

By Figure 7 above, F(x) = − (R1+ R).  Furthermore, ∫ −
=+

π

x
dttRR

1sec
sec2 .  Keeping in 

mind that for x ≤ −1, ππ
≤< − x1sec

2
, and that on the second quadrant the tangent function 

is non-positive, we have 
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∫ −
=+

π

x
dttRR

1sec
sec2  = =+

=

= −

πt

xt
tt 1sec

tansecln  − 1ln 2 −− xx . 

Hence, 21ln 2 RxxR −−−−=  = )sec(1ln 12 xxx −−−−−− π .  Thus 

 

   

[ ]

π

π

+−−+=

−+−−++=

+−−−=

+−=

−

−−

−

1lnsec

)sec(1lnsec)1(

sec)1(
)1()(

21

121

1

xxxx

xxxxx

Rxx
RRxF

 

and so, 

   ∫ − dxx1sec  = xx 1sec−  + Cxx +−− 1ln 2  

      = xx 1sec−  − C
xx

+
−− 1

1ln
2

 

      = xx 1sec−  − Cxx +−+ 1ln 2  

Hence, in both cases 

∫ =− dxx1sec xx 1sec−  − .1ln 2 Cxx +−+  

 

Similar arguments can be used to integrate the inverse co-functions (i.e. the inverse cosine, 

the inverse cosecant and the inverse cotangent).  Having students work through these 

exercises will help to reinforce the concepts in the problems presented above. 

In this article, we have attempted to present an alternative method for integrating 

logarithmic and inverse trigonometric functions.  Using the concepts of area and the first 

Fundamental Theorem of Calculus, students can concretely visualize these integrals.  By 

linking symbolic and geometric representations, these integrals can be found without the 

use of integration by parts.  Thus, they can be introduced earlier than what is traditionally 

done in a calculus course.  Of course, reinforcement of these integrals when the topic of 

integration by parts is presented will help to strengthen a student’s knowledge base. 
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